Volatile Chemicals Identified in Extracts from Leaves of Japanese Mugwort (*Artemisia princeps* Pamp.)

Katumi Umano,[†] Yukio Hagi,[†] Kazuaki Nakahara,[†] Akihiro Shoji,[†] and Takayuki Shibamoto*

Department of Environmental Toxicology, University of California, Davis, California 95616

Extracts from leaves of Japanese mugwort (*Artemisia princeps* Pamp.) were obtained using two methods: steam distillation under reduced pressure followed by dichloromethane extraction (DRP) and simultaneous purging and extraction (SPSE). A total of 192 volatile chemicals were identified in the extracts obtained by both methods using gas chromatography (GC) and gas chromatography– mass spectrometry (GC-MS). They included 47 monoterpenoids (oxygenated monoterpenes), 26 aromatic compounds, 19 aliphatic esters, 18 aliphatic alcohols, 17 monoterpenes (hydrocarbon monoterpenes), 17 sesquiterpenes (hydrocarbon sesquiterpenes), 13 sesquiterpenoids (oxygenated sesquiterpenes), 12 aliphatic aldehydes, 8 aliphatic hydrocarbons, 7 aliphatic ketones, and 9 miscellaneous compounds. The major volatile constituents of the extract by DRP were borneol (10.27 ppm), α -thujone (3.49 ppm), artemisia alcohol (2.17 ppm), verbenone (1.85 ppm), yomogi alcohol (1.50 ppm), and germacren-4-ol (1.43 ppm). The major volatile constituents of the extract by SPSE were 1,8-cineole (8.12 ppm), artemisia acetate (4.22 ppm), α -thujone (3.20 ppm), β -caryophyllene (2.39 ppm), bornyl acetate (2.05 ppm), borneol (1.80 ppm), and *trans-\beta*-farnesene (1.78 ppm).

Keywords: Volatile chemicals; gas chromatography; Japanese mugwort; yomogi

INTRODUCTION

Japanese mugwort (yomogi; Artemisia princeps Pamp.) is a plant native to China, Japan, and Korea. It generally grows in mountainous areas. The plantincluding stem (1 cm), branches, and leaves-grows to \sim 60–120 cm. Young leaves of yomogi have a characteristic greenish aroma. In the spring in Japan, yomogi leaves are mixed with rice cakes to give them a fresh aroma and a greenish color. The green juice of yomogi leaves is also used in traditional Japanese folk medicine to treat skin injuries. In Korea, the juice of yomogi leaves is used to treat gastrointestinal disorders (Kim et al., 1994). The extracts from yomogi leaves have received attention from researchers in Japan and Korea since the mid-1960s. Before appropriate gas chromatography-mass spectrometry (GC-MS) was developed, 22 constituents of extracts from yomogi leaves were identified using fractional distillation and packed column GC (Tsubaki et al., 1966). Later, nearly 100 components of yomogi extracts were identified using an advanced GC-MS with a capillary column (Fujita and Nogami, 1994, 1995).

In the present study, volatile chemicals in extracts obtained from young yomogi leaves were identified by GC and GC-MS.

EXPERIMENTAL PROCEDURES

Materials. Japanese mugwort leaves or yomogi leaves (*A. princeps* Pamp.) were bought from a local market. Authentic compounds were purchased from Aldrich Chemical Co. (Milwaukee, WI), Tokyo Kasei Organic Chemicals (Tokyo, Japan),

Wako Pure Chemical Industries, Ltd. (Osaka, Japan), and Fluka Chemical Co. (Ronkonkoma, NY) or obtained from Takata Koryo Co., Ltd. (Osaka, Japan) as a gift. Yomogi alcohol, artemisia alcohol, and caryophylla-2(12),6(13)-dien-5-one were synthesized according to the methods of Thomas and Pawlak (1971), Wilson and Guazzaroni (1989), and Kaiser and Lamparsky (1983), respectively.

Isolation of Volatile Chemicals by Steam Distillation under Reduced Pressure (DRP). Yomogi leaves (250 g) were washed with cold water three times and once with hot water and then cut into small pieces (1 cm) using a knife. The pieces of yomogi leaves were homogenized in a blender with 1800 mL of distilled water and 200 mL of saturated sodium chloride solution. The homogenized sample was placed in a 3 L round-bottom flask. The solution was steam distilled at 32 °C for 30 min under reduced pressure (32 mmHg). The distillate (900 mL) was extracted with 130 mL of dichloromethane using a liquid-liquid continuous extractor for 6 h. After the extract was dried over anhydrous sodium sulfate, the solvent was removed by distillation with a Vigreux column. The distillation was stopped when the volume of extract was reduced to 1 mL, and then the solvent was further reduced under a purified nitrogen stream until the extract weight was 100 mg. The sample was stored at 5 °C until analysis.

Headspace Isolation by Simultaneous Purging and Solvent Extraction (SPSE). Yomogi leaves (350 g) were washed with cold water three times and once with hot water and then cut into small pieces (1 cm) using a knife. The pieces of yomogi leaves were homogenized in a blender with 2000 mL of distilled water and 200 mL of saturated sodium chloride solution. The homogenized sample was placed in a 5 L roundbottom flask. The flask was connected to an SPSE apparatus previously prepared (Umano and Shibamoto, 1987, 1988). The flask was kept at 40 °C with a water bath. Headspace volatile chemicals were purged into 200 mL of distilled water, which was extracted with 30 mL of dichloromethane simultaneously and continuously for 2 h. After the extract was dried over anhydrous sodium sulfate, the solvent was removed by distillation with a Vigreux column. Distillation was stopped when the volume of extract was reduced to 1 mL. The excess solvent was further reduced under a purified nitrogen stream until

^{*} Author to whom correspondence should be addressed [telephone (530) 752-4543; fax (530) 752-3394; e-mail tshibamoto@ucdavis.edu].

[†] Present address: Takata Koryo Co., Ltd., 22-2, 7-Chome, Tsukaguchi-Honmachi, Amagasaki, Hyogo-Pref., 661 Japan.

			concentrat	ntration (ppm)	
compound	GC neak ^a	I b	DRPc	SPSF ^d	
	de peux	1	Ditti	BIBL	
monoterpenes	0	1001	10	4.40	
α-pinene	9	1021	nd ^e	1.10	
α-thujene	10	1024	nd	0.34	
camphene	15	1064	0.28	1.88	
β -pinene	18	1107	nd	0.66	
sabinene	19	1119	tr	0.47	
α-phellandrene	24	1161	0.11	nd	
myrcene	25	1161	nd	1.06	
α-terpinene	27	1176	0.24	0.15	
D-limonene	32	1197	0.09	1.29	
β -phellandrene	33	1206	0.13	tr	
<i>cis</i> -β-ocimene	37	1230	tr	0.47	
γ-terpinene	39	1243	0.26	0.21	
$trans-\beta$ -ocimene	41	1249	nd	0.22	
1-(1-methylethyl)-4-methylbenzene (<i>p</i> -cymene)	46	1266	tr	tr	
terpinolene	50	1279	tr	tr	
1-(1-methylethyl)-2-methylbenzene (<i>o</i> -cymene)	55	1298	tr	nd	
1-(1-methylethenyl)-4-methylbenzene (dehydro- <i>p</i> -cymene)	83	1432	tr	nd	
monoterpenoids					
2,3-dehydro-1,8-cineol	31	1190	tr	nd	
1,8-cineol	34	1208	0.13	8.12	
5,5-trimethyl-2,6-heptadien-4-one (artemisia ketone)	64	1346	nd	tr	
2,5,5-trimethylhepta-3,6-dien-2-ol (yomogi alcohol)	78	1404	1.50	0.96	
α-thujone	80	1417	3.49	3.20	
2,5,5-trimethylhepta-2,6-dien-4-yl acetate (artemisia acetate)	81	1417	tr	4.22	
β-thujone	84	1436	0.20	0.22	
trans-sabinene hydrate	88	1467	0.40	0.25	
chrysanthenone	93	1501	0.16	0.45	
2 5 5-trimethylbenta-2 6-dien-4-ol (artemisia alcohol)	94	1509	2 17	0.40	
comphor	05	1510	1.06	0.07	
thuivi acatata	00	1549	1.00 tr	0.14 tr	
nujyi acetate	39	1542	0.45	U tu	
<i>cis</i> -sabinene nyurate	100	1550	0.45	Ur tu	
pinocarvone	102	1561	tr	tr	
p-menth-2-en-1-ol ^g	103	1563	0.20	0.02	
bornyl acetate	104	1578	0.43	2.05	
4-terpineol	107	1601	0.34	0.07	
lavandulyl acetate	108	1606	0.07	0.15	
myrtenal	111	1621	tr	0.01	
bornyl isobutanoate	113	1638	0.18	0.35	
bornyl propanoate	114	1641	0.16	0.34	
pinocarveol	115	1654	0.12	0.02	
thuivl alcohol (first)	117	1664	0.09	nd	
thuivl alcohol (second)	121	1679	1.37	nd	
trans-verbenol	122	1679	nd	0.06	
α -terninyl acetate	123	1694	nd	nd	
aterpinol	120	1697	nd	0.01	
horneol	125	1701	10.27	1 79	
varbanana	126	1701	1 85	nd	
a sitrol	120	1701	1.05	nd	
	130	1720	0.04	nd	
	102	1729	0.05	nu	
L-carvenyl acetate	133	1731	na	tr	
piperitol	134	1741	0.36	nd	
chrysanthenol	130	1751	0.04	0.03	
citronellol	138	1769	0.13	nd	
L-perillaldehyde	140	1777	0.13	nd	
myrtenol	141	1793	0.07	nd	
<i>p</i> -mentha-1(7),8-dien-2-ol	142	1797	0.03	nd	
isopiperitenone	144	1832	0.01	nd	
trans-carveol	145	1833	0.28	nd	
p-cymen-8-ol	146	1847	0.02	nd	
geraniol	147	1850	0.10	nd	
<i>trans</i> -myrtanol	148	1856	tr	nd	
cis-myrtanol	149	1861	0.03	nd	
<i>cis</i> -carveol	150	1866	0.34	nd	
niperityl acetate	154	1900	0.02	nd	
I-perillyl alcohol	161	2004	0.32	nd	
sosquitornonos	101	~UUT	0.51	nu	
o concono	01	1407	nd	0.05	
a bourbonono	91	140/	11U	0.05	
a-bourbonene	90	1513	na	LL t	
<i>p</i> -cubebene	98	1524	nd	tr	
<i>trans</i> -α-bergamotene	105	1583	nd	tr	
β -caryophyllene	106	1591	0.07	2.39	
aromadendrene	109	1610	nd	tr	
α-humulene	116	1664	nd	0.77	
<i>trans-β</i> -ndarnesene	118	1668	0.09	1.78	

Table 1 (Continued)

			concentra	ation (ppm)
compound	GC peak ^a	I^b	\mathbf{DRP}^{c}	SPSE ^d
sesquiterpenes				
β -guaiene ^g	119	1671	nd	tr
γ-muurolene	120	1679	nd	0.04
germacrene D	127	1705	nd	1.23
zingiberene	128	1718	nd	0.21
α-muurolene	129	1722	0.15	tr
<i>cis,trans</i> -α-farnesene	131	1726	0.04	0.71
<i>trans,trans</i> -α-farnesene	135	1747	nd	0.21
δ -cadinene	137	1755	1.03	0.21
ar-curcumene	139	1770	nd	0.02
sesquiterpenoids				
caryophyllene oxide	159	1977	0.30	0.01
α-humulene oxide (first)	162	2010	0.02	nd
elemyl acetate	164	2026	0.01	nd
α-humulene oxide (second)	165	2033	0.12	tr
caryophylla-2(12),6(13)-dien-5-one	166	2037	0.20	0.01
trans-nerolidol	167	2041	0.27	tr
germacren-4-ol ^g	168	2050	1.43	nd
globulol	169	2073	nd	tr
carvophylla-2(12).6-dien-5-one	170	2079	0.07	nd
δ -cadinol ^g	174	2169	0.64	0.06
α-bisabolol	177	2214	0.06	nd
a-cadinol ^g	172	2232	1 36	nd
carvonhylla-2(12) 6(13)-dian 5 ol	10	2201	0.41	iiu tr
alinhatic aldehydes	100	6634	0.41	u
2 mothylpropagal	0	010	0.09	0.00
2 methyl 9 proponal	۲. ۲	010	0.02	0.99
2-methyl-2-propenal	5	893	nd	0.05
(E)-2-butenal	13	1037	tr	nd
4-methylpentanal	14	1038	nd	tr
hexanal	16	1080	tr	0.04
heptanal	29	1183	nd	0.01
(E)-2-hexenal	35	1215	0.05	0.14
octanal	53	1286	tr	0.02
(E)-2-heptenal	57	1321	nd	tr
nonanal	76	1391	tr	0.02
(E)-2-octenal	82	1426	tr	nd
(E,Z)-2,4-hentadienal	85	1460	tr	nd
aliphatic esters				
ethyl butanoate	11	1033	tra	nd
2-methylpropyl 2-methylpropanoate	17	1000	nd	tr
2 methylpityl propapato	30	1188	nd	tr
butyl 2 methylbutanosto	28	1922	nd	tr
bowyl contete	30	1232	nd	ti tr
nexyi acetate	47	1671	nd	Ur tu
5-methylbulyi 2-methylbulanoale	48	1270	na	
z-metnyibutyi z-metnyibutanoate	51	1279	nd	0.06
1-hepten-3-yl acetate	52	1284	nd	tr
2-methylbutyl 3-methylbutanoate	54	1295	nd	0.02
(Z)-3-hexenyl acetate	56	1316	0.04	0.27
pentyl 2-methylbutanoate	62	1327	nd	0.01
1-octen-3-yl acetate	71	1379	0.01	0.48
4-methylpentyl 2-methylbutanoate	72	1381	nd	tr
(Z)-3-hexenyl 2-methylpropanoate	73	1385	nd	0.02
(Z)-3-hexenyl 2-methylbutanoate	89	1472	nd	tr
1-nonen-3-yl acetate	90	1477	nd	0.01
ethyl hexadecanoate	179	2255	0.08	nd
ethyl oleate	186	2476	0.03	nd
ethyl linoleate	188	2521	0.02	nd
aliphatic hydrocarbons	100	~0~1	0.02	nu
1-octene	А	802	nd	0.01
triovolono	4 0	1000	nd	0.01
docosano	0 175	2003	nd	0.00
tricosopo	1/0	2200	nd	Uľ +
to reosane	181	2300	nu	tr t=
tetracosane	184	2400	tr	tr
pentacosane	187	2500	tr	tr
hexacosane	190	2600	tr	tr
heptacosane	192	2700	0.03	tr
aliphatic ketones				
acetone	3	846	0.03	nd
3-buten-2-one	6	943	tr	nd
	0			
butane-2.3-dione	7	972	nd	nd
butane-2,3-dione	7	972 1252	nd nd	nd tr
butane-2,3-dione octan-3-one 6 methyl 5 bonton 2 cmc	7 43	972 1252 1225	nd nd	nd tr
butane-2,3-dione octan-3-one 6-methyl-5-hepten-2-one	7 43 63	972 1252 1335	nd nd tr	nd tr trace

Table 1 (Continued)

			concentrat	ion (ppm)
compound	GC peak ^a	I^b	DRP ^c	$SPSE^d$
aliphatic alcohols				
butanol	22	1143	tr	nd
1-penten-3-ol	23	1158	tr	nd
2-methyl-1-huten-3-ol	26	1169	tr	tr
3-methyl-3-huten-1-ol	40	1248	0.01	nd
nentanol	42	1250	tr	nd
2-methyl-(F)-2-butenol	59	1322	0.05	nd
hevanol	67	1355	0.00 tr	nd
(E)-3-beyenol	70	1365	tr	nd
(Z)-S-hevenol	70	1386	0.96	0.03
octan-3-ol	77	1397	0.00	nd
(E)-2-beyond	79	1/08	0.03	nd
1 - acton 3 al	86	1453	0.62	0.25
2 othylhovanol	02	1409	0.02	0.25
1 popon 3 ol	101	1554	0.02	0.02
(F) 2 octopol	101	1615	0.00 tr	0.02 nd
(E)-2-OCCENION dedecorel	110	1015	u nd	tr
hovedeenel	100	1303	nu	u nd
nexadecanol	103	2501	0.02	nd
orcadecallol	169	2361	0.02	nu
toluono	19	1027	t n	0.02
toruene	12	1037	ur mal	0.02
1,4-dimethylbenzene	20	1131	DO m d	Ur tr
1,3-dimethylbenzene	21	1137	DO m d	Ur tr
1,2-dimethylbenzene	28	1180	na	tr
3-etnyl-1-metnylbenzene	30	1222	na	tr
2-etnyl-1-metnylbenzene	44	1257	na	tr
1,2,4-trimethylbenzene	49	1276	nd	tr
5-ethyl-1,3-dimethylbenzene	58	1321	nd	tr
1,2,3-trimethylbenzene	60	1327	nd	tr
2-methyl-1-vinylbenzene	61	1327	tr	nd
4-ethyl-1,3-dimethylbenzene	65	1348	nd	tr
4-ethyl-1,2-dimethylbenzene	69	1362	nd	tr
3-ethyl-1,2-dimethylbenzene	75	1390	0.01	nd
benzaldehyde	97	1514	tr	nd
phenylacetaldehyde	112	1633	0.24	nd
phenylethyl acetate	143	1811	0.10	tr
benzyl alcohol	151	1874	0.05	nd
phenylethyl 2-methylpropanoate	152	1877	0.13	0.02
phenylethyl propanoate	153	1880	0.08	nd
phenylethyl alcohol	155	1908	0.15	nd
phenylethyl 2-methylbutanoate	157	1968	0.11	tr
phenylethyl 3-methylbutanoate	160	1986	0.07	0.02
methyl anisate	171	2085	0.03	nd
cinnamyl alcohol	172	2098	0.08	nd
eugenol	173	2162	0.88	nd
6-methyl-3-isopropylphenol	176	2210	0.03	nd
miscellaneous				
dimethyl sulfide	1	748	nd	tr
2-methylpyrazine	45	1264	tr	nd
3-(methylthio)propanal	85	1449	0.03	nd
2,6-di- <i>tert</i> -butyl-4-methylphenol (BHT)	156	1909	nd	tr
12-hydroxy- <i>cis</i> -9-dodecenoic acid lactone ^g	163	2018	0.04	nd
diethyl phthalate	182	2361	nd	tr
δ -dodecalactone	185	2416	0.03	nd
dibutyl phthalate	191	2680	0.27	0.11

^{*a*} Refer to Figures 1 and 2. ^{*b*} Kovats index on DB-Wax column. ^{*c*} Volatiles obtained by steam distillation under reduced pressure. ^{*d*} Volatiles obtained by simultaneous purging and solvent extraction. ^{*e*} Not detected. ^{*f*} Concentration <0.01 ppm. ^{*g*} Tentatively identified.

the extract weight was 100 mg. The sample was stored at 5 $^{\circ}\mathrm{C}$ until analysis.

Instrumental Analyses of Components. All samples were analyzed using the Kovats GC retention index *I* (Kovats, 1965) and GC-MS. The GC retention index and MS fragmentation pattern of each component were compared with those of the authentic compound for qualitative analysis. A Hewlett-Packard (HP) 6890 GC equipped with a 60 m × 0.25 mm ($d_{\rm f} = 0.25 \ \mu$ m) DB-Wax bonded-phase fused silica capillary column (J&W Scientific, Folsom, CA) and a flame ionization detector (FID) was used for routine quantitative analysis. The oven temperature was held at 40 °C for 2 min and then programmed to 200 °C at 2 °C/min. Detector and injector temperatures were 250 °C. The linear velocity of the helium carrier gas flow rate was 30 cm/s at a split ratio of 30/1.

A Varian 3500 GC interfaced to a Finnigan MAT model 800 ion trap detector was used for MS identification of the GC components. The column and oven conditions for GC-MS analysis were identical to those used for the GC analysis.

RESULTS AND DISCUSSION

The total yields of volatile chemicals (relative to the fresh yomogi leaves used) were 0.0049% (w/w) and 0.0042% (w/w) from DRP and SPSE, respectively. Table 1 shows the compounds identified in extracts obtained from yomogi leaves, along with their calculated concentration and Kovats index on a DB-Wax column. The

Figure 1. Typical gas chromatogram of the extract obtained by DRP. Refer to Experimental Procedures for GC conditions.

concentration of each chemical was calculated using the following equation:

concn (ppm) =

<u>wt of extract (without solvent)</u> \times GC peak area %/100 (μ g) wt of yomogi leaves (231.7 g)

Typical gas chromatograms of extracts by DRP and SPSE are shown in Figures 1 and 2, respectively.

A total of 192 components were identified in the present study. The composition of extracts recovered by the two different methods showed some differences. Among the 132 chemicals identified in the extract obtained by DRP, 42 were monoterpenoids (oxygenated monoterpenes), which composed 69.51% of the total GC peak area. The major volatile constituents of monoterpenoids in this extract were borneol (10.27 ppm)-which is the greatest amount in the extract, verbenone (1.85 ppm), piperitol (0.36 ppm), cis-carveol (0.34 ppm), and L-perillyl alcohol (0.31 ppm). Among the 125 chemicals identified in the extract obtained by SPSE, 26 were monoterpenoids, which composed 56.09% of the total GC peak area. The major volatile constituents of monoterpenoids in this extract were 1,8-cineole (8.12 ppm), 2,5,5trimethylhepta-2,6-dien-4-yl acetate (artemisia acetate, 4.22 ppm), α-thujone (3.20 ppm), bornyl acetate (2.05 ppm), and borneol (1.79 ppm).

The extract by DRP contained 17 aliphatic alcohols that composed 4.58% of the total GC peak area, whereas the extract by SPSE contained only 6 aliphatic alcohols, which composed 0.79% of the total GC peak area.

Alcohols may be difficult to recover from aqueous solution by SPSE due to their high polarity. On the other hand, 2,5,5-trimethylhepta-3,6-dien-2-ol (yomogi alcohol) and 2,5,5-trimethylhepta-2,6-dien-4-ol (artemisia alcohol) were recovered in rather large quantities by SPSE (0.96 and 0.67 ppm, respectively) as compared with DRP (1.50 and 2.17 ppm, respectively). Yomogi alcohol was isolated and identified at first from the essential oil of Artemisia feddei Lev. et Van (Hayashi et al., 1968). Later, it was synthesized and the structure was confirmed (Willhalm and Thomas, 1969). Artemisia alcohol was first reported in the extract of Artemisia ageratum, which grows in the central region of Italy (Grandi et al., 1976). The other artemisyl derivatives, such as artemisia ketone and artemisia acetate, were also reported in the extract. Later, artemisia alcohol was also found in the extract of A. princeps Pampan (yomogi) (Fujita and Nogami, 1994).

It is interesting that artemisia acetate was recovered as a major constituent by SPSE but was recovered in only trace amounts by DRP. 1,8-Cineole was also recovered by SPSE in large quantities but not by DRP. The essential oil prepared from *Artemisia asiatica* Nakai by hydrodistillation reportedly contained the greatest amount of 1,8-cineole: 39.7% of the total GC peak area (Kalemba, 1999). On the other hand, an oil prepared from *A. princeps* Pampan by steam distillation under normal pressure contained 1,8-cineole only as one of the minor constituents (5.55–0.40%) (Fujita and Nogami, 1994).

The percentage of monoterpenes (hydrocarbon monoterpenes) was much higher in extracts obtained by

Figure 2. Typical gas chromatogram of the extract obtained by SPSE. Refer to Experimental Procedures for GC conditions.

SPSE (19.76% of the total GC peak area) than in extracts obtained by DRP (3.19% of the total GC peak area). The major monoterpenes in extracts obtained by SPSE were camphene (1.88 ppm), D-limonene (1.29 ppm), α -pinene (1.10 ppm), and myrcene (1.06 ppm). In contrast, no monoterpenes were present at levels >1 ppm in extracts obtained by DRP. Sesquiterpenes (hydrocarbon sesquiterpenes) were also recovered by SPSE (18.97% of the total GC peak area) with greater efficiency than by DRP (3.48% of the total GC peak area).

Extracts obtained from yomogi leaves consisted of many terpenoids (oxygenated terpenes). These extracts also contained many oxygenated aliphatic compounds including 12 aldehydes, 19 esters, 7 ketones, and 18 alcohols. Some of these compounds play an important role in the aroma of this extract. For example, aliphatic aldehydes, such as (E)-2-hexenal, (E)-2-heptenal, and (E)-2-octenal, possess a strong green note (Arctander, 1969). It follows that the characteristic strong green aroma of this extract may be due to the presence of these oxygenated aliphatic compounds in addition to the presence of terpenoids.

A total of 26 aromatic compounds were identified in the present study: 16 by DPC and 15 by SPSE. *p*- and *o*-cymenes are aromatic compounds, but they are listed as monoterpenes in Table 1. Alkyl aromatic hydrocarbons such as toluene, dimethylbenzenes, and methyl ethylbenzenes are not generally present in extracts isolated from plants. Therefore, these may be formed from monoterpenes via disproportionation reaction during experiments. Two phthalate compounds found in the extracts by DRP are probably contaminants from unknown sources.

LITERATURE CITED

- Arctander, S. Perfume and Flavor Chemical, Arctander: Montclair, NJ, 1969.
- Fujita, S.; Nogami, K. Constituents of the essential oil of *Artemisia princeps*. In *Proceedings of the 38th Symposium on the Chemistry of Terpenes, Essential Oils, and Aromatics (TEAC38)*; 1994; pp 1–3.
- Fujita, S.; Nogami, K. Constituents of the essential oil of Artemisia princeps Pampan. In Proceedings of the 39th Symposium on the Chemistry of Terpenes, Essential Oils, and Aromatics (TEAC39); 1995; pp 267–269.
- Grandi, R.; Messerotti, W.; Pagnoni, U. M. Monoterpene variation in two *Achillea ageratum* chemotypes. *Phytochemistry* **1976**, *15*, 1770–1771.
- Hayashi, S.; Yano, K.; Matsuura, T. A new monoterpene alcohol from *Artemisia feddei* Lev. et Van. *Tetrahedron Lett.* **1968**, 6241–6243.
- Kaiser, R.; Lamparsky, D. New carbonyl compounds in the high-boiling fraction of lavender oil. *Helv. Chim. Acta* 1983, *66*, 1843–1849.
- Kalemba, D. Constituents of the essential oil of Artemisia asiatica Nakai. Flav. Fragr. **1999**, *14*, 173–176.
- Kim, Y. S.; Lee, J. H.; Kim, M. N.; Lee, W. G.; Kim, J. O. Volatile flavour compounds from raw mugwort leaves and parched mugwort tea. *Korean Soc. Food Nutr.* **1994**, *23*, 261–264; *Chem. Abstr.* **1994**, 121, 29965g.
- Kovats, E. Gas chromatographic characterization of organic substances in the retention index system. *Adv. Chromatogr.* 1965, 1, 229–247.
- Thomas, A. F.; Pawlak, W. The synthesis and reactions of yomogi alcohol. *Helv. Chim. Acta* **1971**, *54*, 1822–1845.

- Umano, K.; Shibamoto, T. Analysis of headspace volatiles from overheated beef fat. J. Agric. Food Chem. **1987**, 35, 14–18.
- Umano, K.; Shibamoto, T. A new method of headspace sampling: grapefruit volatiles. In *Flavors and Fragrances:* A World Perspective, Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Washington, DC, 1988; pp 981–998.

- Willhalm, B.; Thomas, A. F. Synthesis and structure of yomogi alcohol, an alcohol related to artemisia alcohol. *Chem. Commun.* **1969**, 1380.
- Wilson, S. R.; Guazzaroni, M. E. Synthesis of homoallylic alcohol in aqueous media. *J. Org. Chem.* **1989**, *54*, 3087–3091.

Received for review February 9, 2000. Accepted May 8, 2000. JF0001738